ディープラーニング
こんにちは。ZOZO Researchの研究員の古澤・川島・平川、ZOZOのデータサイエンティストの荒木・小林です。2024年8月6日(火)から8月9日(金)にかけて熊本で開催された画像の認識・理解シンポジウムMIRU2024に参加しました。この記事では、MIRU2024でのZOZO…
6/17-6/21にシアトルで開催されたコンピュータビジョン・パターン認識分野の国際会議CVPR 2024の参加レポートです。
はじめに こんにちは、ZOZO研究所AppliedMLチームの古澤です。私たちは商品画像の検索の基礎として、深層距離学習という技術を研究しています。本記事では、本研究所からICLR2024に採択された「Mean Field Theory in Deep Metric Learning」という研究につい…
7月末に浜松で開催された画像認識研究会MIRU2023でZOZO NEXTは2件の発表を行いました。本記事ではそれらの研究と学会の概要について報告します。
こんにちは。ZOZO ResearchのResearcherの平川と古澤です。2022年7月25日(月)から7月28日(木)にかけて画像の認識・理解シンポジウムMIRU2022に参加しました。この記事では、MIRU2022でのZOZO Researchのメンバーの取り組みやMIRU2022の様子について報告…
自己学習型AIの一種である「Open Ended Learning」を活用したユーザー体験向上への取り組みを紹介します。
ZOZO研究所の清水です。弊社の社会人ドクター制度を活用しながら、「社内外に蓄積されているデータからビジネスへの活用が可能な知見を獲得するための技術」の研究開発に取り組んでいます。 弊社の社会人ドクター制度に関しては、以下の記事をご覧ください。…
本記事では、近年目覚ましい進展を見せている画像ベースの仮想試着の研究を紹介し、実用化を考える際に解決すべき課題とアプローチの考察も併せて紹介します。
ディープラーニング時代のレコメンド技術の変遷と、推薦アルゴリズムの計算高速化のテクニックをご紹介します。
ZOZO Researchの斎藤です。私たちはファッションコーディネートの推薦や生成の基礎として、深層集合マッチングという技術を研究しています。本記事では、深層集合マッチングを理解する上で必要な諸概念の説明と、ファッションデータを使った実験結果について…
こんにちは、ZOZOテクノロジーズで機械学習の研究開発をしている松井・真木です。2019 年 9 月末にコペンハーゲンで行われた推薦システムのトップカンファレンスである RecSys 2019 に参加してきたので、本稿では参加報告と気になった論文の紹介をします。
こんにちは。ZOZO Researchの小倉です。2019年7月29日(月)から8月1日(木)にかけてグランキューブ大阪(大阪府立国際会議場)で開催されたMIRU2019に参加しました。今回はその様子をレポートします。
ZOZO研究所の後藤です。本記事ではGoogle Cloud TPUを使った計量学習の高速化の事例を紹介します。 はじめに 深層学習を用いたプロダクトを開発・運用する上で、モデルの学習にかかる膨大な時間はボトルネックの1つです。 ファッションにおける深層学習を用…
ZOZO研究所でインターンをしている松井です。本記事では、cross-domain画像検索とdeep metric learningの概要と、cross-domain画像検索で良い精度を達成するためのテクニックを取り上げます。
(Icon Credit *1) こんにちは。スタートトゥデイ研究所の後藤です。 今回は、集合を入力として扱うネットワークモデルの紹介をしたいと思います。機械学習の多くのモデルは、固定長の入出力や順序のある可変長の入出力を扱うように設計されます。画像デー…
スタートトゥデイ研究所リサーチャーの中村です。 今回は、コーディネートからスタイルを自動抽出する技術に関するアイデアの紹介です。こちらは、企業研究所による研究発表カンファレンス (CCSE2018)でも同様の内容で発表させていただきました。 そのときに…
この服装に合う靴を選んでコーディネートを完成させたいと思います。皆さんはどの靴を選びますか? データサイエンティストの中村です。今回、このようなタスクを解くためのシステムを開発しました。本記事ではシステムと裏側の要素技術について紹介したいと…
こんにちは、データチームの後藤です。 VASILYデータチームは2017年8月7日〜10日にかけて、広島で行われた第20回画像の認識・理解シンポジウム(以下、MIRU2017)に参加しました。本記事では、発表の様子や参加した感想をお伝えしたいと思います。
こんにちは。データチームの後藤です。 弊社のデータサイエンティストは職務の1つとしてファッション×機械学習の研究・開発に取り組んでいます。このファッション×機械学習の分野は世界中の大学や研究機関で精力的に研究されているため、我々も最新の動向を…
初めまして、データチームの上月です。 今回はVASILYテックブログ初の論文紹介、テーマは 自己回帰型モデル(Autoregressive, AR)です。 はじめに VASILYではIQONの類似画像検索にAutoencoderを適用しています。 具体的にはアイテム画像で学習したAutoencod…
同僚に3ヶ月のディープラーニング禁止令を言い渡したデータサイエンティストの中村です。 VASILYではスナップ画像に写っているモデルさんが着ている服と似ている服を検索する画像検索エンジンを開発しています。 ファッションアイテムを探す際、デザイン(ア…
機械学習とデータ分析を支えるAWSとGCPを利用したマルチクラウドアーキテクチャについて紹介したいと思います。
データサイエンティストの中村です。今回はイメージファーストなファッションアイテム検索システムを作ってみたのでそちらの紹介をしたいと思います。 本記事で紹介する技術はIBIS2016でも報告しています。 概要 ファッションアイテムを探すとき、見た目の印…
こんにちは、データチームの後藤です。 VASILYデータチームは2016年11月16日~18日にかけて、京都大学で行われた第19回情報論的学習理論ワークショップ(以下、IBIS2016)に参加しました。本記事では、発表の様子や参加した感想をお伝えしたいと思います。
データサイエンティストの中村です。VASILYではファッションに特化した画像解析エンジンを開発しています。本記事では、スナップ写真からファッションアイテムを検出するシステムを紹介したいと思います。 概要 このシステムの入力はスナップ写真です。スナ…
この記事では、一般物体認識で優秀な成績を収めた代表的なニューラルネットワークモデルを、ファッションアイテムの画像データに対して適用し、どのアーキテクチャが有用か、どれだけの精度を出せるのかを調べる実験を行います。
ディープラーニングを使って商品画像から商品カテゴリーの分類を行うマイクロサービスの設計・製作を行い、クローラーに組み込みを行いました。 その結果、分類精度99.7%を達成しました。